Serveur d'exploration sur le suicide chez les dentistes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment.

Identifieur interne : 000008 ( Main/Exploration ); précédent : 000007; suivant : 000009

Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment.

Auteurs : G. Ruiz-Heiland [Allemagne] ; J W Yong [Allemagne] ; J. Von Bremen [Allemagne] ; S. Ruf [Allemagne]

Source :

RBID : pubmed:32820432

Descripteurs français

English descriptors

Abstract

OBJECTIVES

Juvenile obesity is a complex clinical condition that is present more and more frequently in the daily orthodontic practice. Over-weighted patients have an impaired bone metabolism, due in part to their increased levels of circulating adipokines. Particularly, leptin has been reported to play a key role in bone physiology. Leptin is ubiquitously present in the body, including blood, saliva, and crevicular fluid. If, and to what extent, it could influence the reaction of cementoblasts during orthodontic-induced forces is yet unknown.

MATERIAL AND METHODS

OCCM-30 cementoblasts were cultivated under compressive forces using different concentrations of leptin. The expression of ObR, Runx-2, Osteocalcin, Rank-L, Sost, Caspase 3, 8, and 9 were analyzed by RT-PCR. Western blots were employed for protein analysis. The ERK1/2 antagonist FR180204 (Calbiochem) was used and cPLA2 activation, PGE2, and cytochrome C release were further evaluated.

RESULTS

In vitro, when compressive forces are applied, leptin promotes ERK1/2 phosphorylation, as well as upregulates PGE2 and caspase 3 and caspase 9 on OCCM cells. Blockade of ERK1/2 impairs leptin-induced PGE2 secretion and reduced caspase 3 and caspase 9 expression.

CONCLUSIONS

Leptin influences the physiological effect of compressive forces on cementoblasts, exerting in vitro a pro-inflammatory and pro-apoptotic effect.

CLINICAL RELEVANCE

Our findings indicate that leptin exacerbates the physiological effect of compressive forces on cementoblasts promoting the release of PGE2 and increases the rate of cell apoptosis, and thus, increased levels of leptin may influence the inflammatory response during orthodontically induced tooth movement.


DOI: 10.1007/s00784-020-03501-3
PubMed: 32820432
PubMed Central: PMC7965856


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment.</title>
<author>
<name sortKey="Ruiz Heiland, G" sort="Ruiz Heiland, G" uniqKey="Ruiz Heiland G" first="G" last="Ruiz-Heiland">G. Ruiz-Heiland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany. gisela.ruiz-heiland@dentist.med.uni-giessen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yong, J W" sort="Yong, J W" uniqKey="Yong J" first="J W" last="Yong">J W Yong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Von Bremen, J" sort="Von Bremen, J" uniqKey="Von Bremen J" first="J" last="Von Bremen">J. Von Bremen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruf, S" sort="Ruf, S" uniqKey="Ruf S" first="S" last="Ruf">S. Ruf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:32820432</idno>
<idno type="pmid">32820432</idno>
<idno type="doi">10.1007/s00784-020-03501-3</idno>
<idno type="pmc">PMC7965856</idno>
<idno type="wicri:Area/Main/Corpus">000026</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000026</idno>
<idno type="wicri:Area/Main/Curation">000026</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000026</idno>
<idno type="wicri:Area/Main/Exploration">000026</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment.</title>
<author>
<name sortKey="Ruiz Heiland, G" sort="Ruiz Heiland, G" uniqKey="Ruiz Heiland G" first="G" last="Ruiz-Heiland">G. Ruiz-Heiland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany. gisela.ruiz-heiland@dentist.med.uni-giessen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yong, J W" sort="Yong, J W" uniqKey="Yong J" first="J W" last="Yong">J W Yong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Von Bremen, J" sort="Von Bremen, J" uniqKey="Von Bremen J" first="J" last="Von Bremen">J. Von Bremen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruf, S" sort="Ruf, S" uniqKey="Ruf S" first="S" last="Ruf">S. Ruf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen</wicri:regionArea>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>35392, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Clinical oral investigations</title>
<idno type="eISSN">1436-3771</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoptosis (MeSH)</term>
<term>Dental Cementum (MeSH)</term>
<term>Dinoprostone (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Leptin (MeSH)</term>
<term>MAP Kinase Signaling System (MeSH)</term>
<term>Overweight (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoptose (MeSH)</term>
<term>Cément dentaire (MeSH)</term>
<term>Dinoprostone (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Leptine (MeSH)</term>
<term>Surpoids (MeSH)</term>
<term>Système de signalisation des MAP kinases (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Dinoprostone</term>
<term>Leptin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Apoptosis</term>
<term>Dental Cementum</term>
<term>Humans</term>
<term>MAP Kinase Signaling System</term>
<term>Overweight</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apoptose</term>
<term>Cément dentaire</term>
<term>Dinoprostone</term>
<term>Humains</term>
<term>Leptine</term>
<term>Surpoids</term>
<term>Système de signalisation des MAP kinases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVES</b>
</p>
<p>Juvenile obesity is a complex clinical condition that is present more and more frequently in the daily orthodontic practice. Over-weighted patients have an impaired bone metabolism, due in part to their increased levels of circulating adipokines. Particularly, leptin has been reported to play a key role in bone physiology. Leptin is ubiquitously present in the body, including blood, saliva, and crevicular fluid. If, and to what extent, it could influence the reaction of cementoblasts during orthodontic-induced forces is yet unknown.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>MATERIAL AND METHODS</b>
</p>
<p>OCCM-30 cementoblasts were cultivated under compressive forces using different concentrations of leptin. The expression of ObR, Runx-2, Osteocalcin, Rank-L, Sost, Caspase 3, 8, and 9 were analyzed by RT-PCR. Western blots were employed for protein analysis. The ERK1/2 antagonist FR180204 (Calbiochem) was used and cPLA2 activation, PGE2, and cytochrome C release were further evaluated.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In vitro, when compressive forces are applied, leptin promotes ERK1/2 phosphorylation, as well as upregulates PGE2 and caspase 3 and caspase 9 on OCCM cells. Blockade of ERK1/2 impairs leptin-induced PGE2 secretion and reduced caspase 3 and caspase 9 expression.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Leptin influences the physiological effect of compressive forces on cementoblasts, exerting in vitro a pro-inflammatory and pro-apoptotic effect.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CLINICAL RELEVANCE</b>
</p>
<p>Our findings indicate that leptin exacerbates the physiological effect of compressive forces on cementoblasts promoting the release of PGE2 and increases the rate of cell apoptosis, and thus, increased levels of leptin may influence the inflammatory response during orthodontically induced tooth movement.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32820432</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>06</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1436-3771</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2021</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Clinical oral investigations</Title>
<ISOAbbreviation>Clin Oral Investig</ISOAbbreviation>
</Journal>
<ArticleTitle>Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment.</ArticleTitle>
<Pagination>
<MedlinePgn>1933-1944</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00784-020-03501-3</ELocationID>
<Abstract>
<AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">Juvenile obesity is a complex clinical condition that is present more and more frequently in the daily orthodontic practice. Over-weighted patients have an impaired bone metabolism, due in part to their increased levels of circulating adipokines. Particularly, leptin has been reported to play a key role in bone physiology. Leptin is ubiquitously present in the body, including blood, saliva, and crevicular fluid. If, and to what extent, it could influence the reaction of cementoblasts during orthodontic-induced forces is yet unknown.</AbstractText>
<AbstractText Label="MATERIAL AND METHODS" NlmCategory="METHODS">OCCM-30 cementoblasts were cultivated under compressive forces using different concentrations of leptin. The expression of ObR, Runx-2, Osteocalcin, Rank-L, Sost, Caspase 3, 8, and 9 were analyzed by RT-PCR. Western blots were employed for protein analysis. The ERK1/2 antagonist FR180204 (Calbiochem) was used and cPLA2 activation, PGE2, and cytochrome C release were further evaluated.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In vitro, when compressive forces are applied, leptin promotes ERK1/2 phosphorylation, as well as upregulates PGE2 and caspase 3 and caspase 9 on OCCM cells. Blockade of ERK1/2 impairs leptin-induced PGE2 secretion and reduced caspase 3 and caspase 9 expression.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Leptin influences the physiological effect of compressive forces on cementoblasts, exerting in vitro a pro-inflammatory and pro-apoptotic effect.</AbstractText>
<AbstractText Label="CLINICAL RELEVANCE" NlmCategory="CONCLUSIONS">Our findings indicate that leptin exacerbates the physiological effect of compressive forces on cementoblasts promoting the release of PGE2 and increases the rate of cell apoptosis, and thus, increased levels of leptin may influence the inflammatory response during orthodontically induced tooth movement.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ruiz-Heiland</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1582-020X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany. gisela.ruiz-heiland@dentist.med.uni-giessen.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yong</LastName>
<ForeName>J W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>von Bremen</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruf</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Clin Oral Investig</MedlineTA>
<NlmUniqueID>9707115</NlmUniqueID>
<ISSNLinking>1432-6981</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020738">Leptin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K7Q1JQR04M</RegistryNumber>
<NameOfSubstance UI="D015232">Dinoprostone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>D</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003739" MajorTopicYN="Y">Dental Cementum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015232" MajorTopicYN="N">Dinoprostone</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020738" MajorTopicYN="Y">Leptin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020935" MajorTopicYN="N">MAP Kinase Signaling System</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050177" MajorTopicYN="N">Overweight</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cementoblasts</Keyword>
<Keyword MajorTopicYN="N">ERK1/2</Keyword>
<Keyword MajorTopicYN="N">Leptin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32820432</ArticleId>
<ArticleId IdType="doi">10.1007/s00784-020-03501-3</ArticleId>
<ArticleId IdType="pii">10.1007/s00784-020-03501-3</ArticleId>
<ArticleId IdType="pmc">PMC7965856</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>World Health Organisation (WHO). https://www.who.int/topics/obesity/en/ . Accessed 14.05.2019</Citation>
</Reference>
<Reference>
<Citation>Adamczak M, Wiecek A (2013) The adipose tissue as an endocrine organ. Semin Nephrol 33:2–13. https://doi.org/10.1016/j.semnephrol.2012.12.008</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.semnephrol.2012.12.008</ArticleId>
<ArticleId IdType="pubmed">23374889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Krysiak R, Handzlik-Orlik G, Okopien B (2012) The role of adipokines in connective tissue diseases. Eur J Nutr 51:513–528. https://doi.org/10.1007/s00394-012-0370-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00394-012-0370-0</ArticleId>
<ArticleId IdType="pubmed">22584415</ArticleId>
<ArticleId IdType="pmcid">3397228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Raucci R, Rusolo F, Sharma A, Colonna G, Castello G, Costantini S (2013) Functional and structural features of adipokine family. Cytokine 61:1–14. https://doi.org/10.1016/j.cyto.2012.08.036</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cyto.2012.08.036</ArticleId>
<ArticleId IdType="pubmed">23022179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Iallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nm1195-1155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nokhbehsaim M, Keser S, Nogueira AV, Jager A, Jepsen S, Cirelli JA, Bourauel C, Eick S, Deschner J (2014) Leptin effects on the regenerative capacity of human periodontal cells. Int J Endocrinol 2014:180304–180313. https://doi.org/10.1155/2014/180304</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1155/2014/180304</ArticleId>
<ArticleId IdType="pubmed">25136363</ArticleId>
<ArticleId IdType="pmcid">4129942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genco RJ, Borgnakke WS (2013) Risk factors for periodontal disease. Periodontol 62:59–94. https://doi.org/10.1111/j.1600-0757.2012.00457.x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1600-0757.2012.00457.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Greay AB, Broon N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415. https://doi.org/10.1677/joe.0.1750405</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1677/joe.0.1750405</ArticleId>
<ArticleId IdType="pubmed">12429038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209. https://doi.org/10.1359/jbmr.2002.17.2.200</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1359/jbmr.2002.17.2.200</ArticleId>
<ArticleId IdType="pubmed">11811550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alikhani M, Lopez JA, Alabdullah H, Vongthongleur T, Sangsuwon C, Alansari S, Okiveira SM, Nervina JM, Teixeira CC (2016) High-frequency acceleration: therapeutic tool to preserve bone following tooth extractions. J Dent Res 95:311–318. https://doi.org/10.1177/0022034515621495</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/0022034515621495</ArticleId>
<ArticleId IdType="pubmed">26672126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Haugland L, Kristensen KD, Lie SA, Vandevska-Radunovic V (2018) The effect of biologic factors and adjunctive therapies on orthodontically induced inflammatory root resorption: a systematic review and meta-analysis. Eur J Orthod 40:326–336. https://doi.org/10.1093/ejo/cjy003</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/ejo/cjy003</ArticleId>
<ArticleId IdType="pubmed">29617793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Memmert S, Damanaki A, Nogueira AVB, Nokhbehsaim M, Gotz W, Cirelli JA, Rath-Deschner B, Jager A, Deschner J (2019) Regulation of tyrosine hydroxylase in periodontal fibroblasts and tissues by obesity-associated stimuli. Cell Tissue Res 375:619–628. https://doi.org/10.1007/s00441-018-2941-8</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00441-018-2941-8</ArticleId>
<ArticleId IdType="pubmed">30361782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li M, Zhang C, Yang Y (2019) Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: a systematic review of in vitro studies. Bone Joint Res 8:19–31. https://doi.org/10.1302/2046-3758.81.BJR-2018-0060.R1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1302/2046-3758.81.BJR-2018-0060.R1</ArticleId>
<ArticleId IdType="pubmed">30800296</ArticleId>
<ArticleId IdType="pmcid">6359886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Memmert S, Damanaki A, Nokhbehsaim M, Nogueira AVB, Eick S, Cirelli JA, Jäger A, Deschner J (2019) Regulation of somatostatin receptor 2 by proinflammatory, microbial and obesity-related signals in periodontal cells and tissues. Head Face Med 15:2. https://doi.org/10.1186/s13005-018-0185-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s13005-018-0185-1</ArticleId>
<ArticleId IdType="pubmed">30609928</ArticleId>
<ArticleId IdType="pmcid">6319011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>D’Errico JA, Berry JE, Ouyang H, Strayhorn CL, Windle JJ, Somerman MJ (2000) Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 71:63–72. https://doi.org/10.1902/jop.2000.71.1.63</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1902/jop.2000.71.1.63</ArticleId>
<ArticleId IdType="pubmed">10695940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proff P, Reicheneder C, Faltermeier A, Kubein-Meesenburg D, Romer P (2014) Effects of mechanical and bacterial stressors on cytokine and growth-factor expression in periodontal ligament cells. J Orofac Orthop 75:191–202. https://doi.org/10.1007/s00056-014-0212-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00056-014-0212-1</ArticleId>
<ArticleId IdType="pubmed">24825831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F, Li X, Ominsky M, Richards W, Schett G, Zwerina J (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159. https://doi.org/10.1136/ard.2010.132852</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/ard.2010.132852</ArticleId>
<ArticleId IdType="pubmed">20858621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Srinivasan B, Chitharanjan A, Kailasam V, Lavu V, Ganapathy V (2019) Evaluation of leptin concentration in Gingival Crevicular Fluid (GCF) during orthodontic tooth movement and its correlation to the rate of tooth movement. J Orthod Sci 8:6. https://doi.org/10.4103/jos.JOS_58_18</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4103/jos.JOS_58_18</ArticleId>
<ArticleId IdType="pubmed">31161129</ArticleId>
<ArticleId IdType="pmcid">6540779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sar SK, Shetty D, Kumar P, Juneja S, Sharma P (2019) Leptin levels in gingival crevicular fluid during canine retraction: in vivo comparative study. J Orthod 46:27–33. https://doi.org/10.1177/1465312518820533</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/1465312518820533</ArticleId>
<ArticleId IdType="pubmed">31056072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li W, Zhu W, Hou J, Huang B, Liu K, Meng H (2014) Leptin and its receptor expression in dental and periodontal tissues of primates. Cell Tissue Res 355:181–188. https://doi.org/10.1007/s00441-013-1729-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00441-013-1729-0</ArticleId>
<ArticleId IdType="pubmed">24126952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ay ZY, Kirzioglu FY, Tonguc MO, Sutcu R, Kapucuoglu N (2012) The gingiva contains leptin and leptin receptor in health and disease. Odontology 100:222–231. https://doi.org/10.1007/s10266-011-0043-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10266-011-0043-0</ArticleId>
<ArticleId IdType="pubmed">22002746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kapur S, Amoui M, Kesavan C, Wang X, Mohan S, Baylink DJ, Lau KH (2010) Leptin receptor (Lepr) is a negative modulator of bone mechanosensitivity and genetic variations in Lepr may contribute to the differential osteogenic response to mechanical stimulation in the C57BL/6J and C3H/HeJ pair of mouse strains. J Biol Chem 285:37607–37618. https://doi.org/10.1074/jbc.M110.169714</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1074/jbc.M110.169714</ArticleId>
<ArticleId IdType="pubmed">20851886</ArticleId>
<ArticleId IdType="pmcid">2988366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Martin-Gonzalez J, Carmona-Fernandez A, Perez-Perez A, Sanchez-Jimenez F, Sanchez-Margalet V, Segura-Egea JJ (2015) Expression and immunohistochemical localization of leptin in human periapical granulomas. Med Oral Patol Oral Cir Bucal 20:e334–e339. https://doi.org/10.4317/medoral.20385</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4317/medoral.20385</ArticleId>
<ArticleId IdType="pubmed">25662559</ArticleId>
<ArticleId IdType="pmcid">4464921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li W, Huang B, Liu K, Hou J, Meng H (2015) Upregulated leptin in periodontitis promotes inflammatory cytokine expression in periodontal ligament cells. J Periodontol 86:917–926. https://doi.org/10.1902/jop.2015.150030</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1902/jop.2015.150030</ArticleId>
<ArticleId IdType="pubmed">25879793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Akram Z, Safii SH, Vaithilingam RD, Baharuddin NA, Javed F, Vohra F (2016) Efficacy of non-surgical periodontal therapy in the management of chronic periodontitis among obese and non-obese patients: a systematic review and meta-analysis. Clin Oral Investig 20:903–914. https://doi.org/10.1007/s00784-016-1793-4</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00784-016-1793-4</ArticleId>
<ArticleId IdType="pubmed">27005812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Williams RC, Skelton AJ, Todryk SM, Rowan AD, Preshaw PM, Taylor JJ (2016) Leptin and pro-inflammatory stimuli synergistically upregulate MMP-1 and MMP-3 secretion in human gingival fibroblasts. PLoS One 11:e0148024. https://doi.org/10.1371/journal.pone.0148024</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0148024</ArticleId>
<ArticleId IdType="pubmed">26829555</ArticleId>
<ArticleId IdType="pmcid">4734666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bosshardt DD (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84:390–406. https://doi.org/10.1177/154405910508400501</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/154405910508400501</ArticleId>
<ArticleId IdType="pubmed">15840773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Feller L, Khammissa RA, Thomadakis G, Fourie J, Lemmer J (2016) Apical external root resorption and repair in orthodontic tooth movement: biological events. Biomed Res Int 2016:4864195–4864197. https://doi.org/10.1155/2016/4864195</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1155/2016/4864195</ArticleId>
<ArticleId IdType="pubmed">27119080</ArticleId>
<ArticleId IdType="pmcid">4828521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rego EB, Inubushi T, Kawazoe A, Miyauchi M, Tanaka E, Takata T, Tanne K (2011) Effect of PGE(2) induced by compressive and tensile stresses on cementoblast differentiation in vitro. Arch Oral Biol 56:1238–1246. https://doi.org/10.1016/j.archoralbio.2011.05.007</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.archoralbio.2011.05.007</ArticleId>
<ArticleId IdType="pubmed">21700269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diercke K, Zingler S, Kohl A, Lux CJ, Erber R (2014) Gene expression profile of compressed primary human cementoblasts before and after IL-1beta stimulation. Clin Oral Investig 18:1925–1939. https://doi.org/10.1007/s00784-013-1167-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00784-013-1167-0</ArticleId>
<ArticleId IdType="pubmed">24407550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kirschneck C, Batschkus S, Proff P, Kostler J, Spanier G, Schroder A (2017) Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 7:14751. https://doi.org/10.1038/s41598-017-15281-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41598-017-15281-0</ArticleId>
<ArticleId IdType="pubmed">29116140</ArticleId>
<ArticleId IdType="pmcid">5677027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34. https://doi.org/10.1111/j.1467-789X.2006.00270.x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1467-789X.2006.00270.x</ArticleId>
<ArticleId IdType="pubmed">17212793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA (2015) Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 64:35–46. https://doi.org/10.1016/j.metabol.2014.10.015</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.metabol.2014.10.015</ArticleId>
<ArticleId IdType="pubmed">25497342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Groschl M, Rauh M, Wagner R, Neuhuber W, Metzler M, Tamguney G, Zenk J, Schoof E, Dorr HG, Blum WF, Rascher W, Dotsch J (2001) Identification of leptin in human saliva. J Clin Endocrinol Metab 86:5234–5239. https://doi.org/10.1210/jcem.86.11.7998</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1210/jcem.86.11.7998</ArticleId>
<ArticleId IdType="pubmed">11701683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pirsean C, Negut C, Stefan-van Staden RI, Dinu-Pirvu CE, Armean P, Udeanu DI (2019) The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity. PLoS One 14:e0210288. https://doi.org/10.1371/journal.pone.0210288</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0210288</ArticleId>
<ArticleId IdType="pubmed">30605486</ArticleId>
<ArticleId IdType="pmcid">6317816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jayachandran T, Srinivasan B, Padmanabhan S (2017) Salivary leptin levels in normal weight and overweight individuals and their correlation with orthodontic tooth movement. Angle Orthod 87:739–744. https://doi.org/10.2319/120216-869.1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2319/120216-869.1</ArticleId>
<ArticleId IdType="pubmed">28471265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aydin S, Halifeoglu I, Ozercan IH, Erman F, Kilic N, Ilhan N, Ozkan Y, Akpolat N, Sert L, Caylak E (2005) A comparison of leptin and ghrelin levels in plasma and saliva of young healthy subjects. Peptides 26:647–652. https://doi.org/10.1016/j.peptides.2004.11.008</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.peptides.2004.11.008</ArticleId>
<ArticleId IdType="pubmed">15752580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kim GS, Hong JS, Kim SW, Koh JM, An CS, Choi JY, Cheng SL (2003) Leptin induces apoptosis via ERK/cPLA2/cytochrome c pathway in human bone marrow stromal cells. J Biol Chem 278:21920–21929. https://doi.org/10.1074/jbc.M204598200</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1074/jbc.M204598200</ArticleId>
<ArticleId IdType="pubmed">12665505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Roskoski R Jr (2012) MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 417:5–10. https://doi.org/10.1016/j.bbrc.2011.11.145</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.bbrc.2011.11.145</ArticleId>
<ArticleId IdType="pubmed">22177953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143. https://doi.org/10.1016/j.phrs.2012.04.005</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.phrs.2012.04.005</ArticleId>
<ArticleId IdType="pubmed">22569528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319:991–997. https://doi.org/10.1124/jpet.106.107367</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1124/jpet.106.107367</ArticleId>
<ArticleId IdType="pubmed">16801453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hoshi K, Kawaki H, Takahashi I, Takeshita N, Seiryu M, Murshid SA, Masuda T, Anada T, Kato R, Kitaura H, Suzuki O, Takano-Yamamoto T (2014) Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J Bone Miner Res 29:1244–1257. https://doi.org/10.1002/jbmr.2115</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jbmr.2115</ArticleId>
<ArticleId IdType="pubmed">24155087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Park BG, Yoo CI, Kim HT, Kwon CH, Kim YK (2005) Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells. Toxicology 215:115–125. https://doi.org/10.1016/j.tox.2005.07.003</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tox.2005.07.003</ArticleId>
<ArticleId IdType="pubmed">16125295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhuang S, Yan Y, Daubert RA, Han J, Schnellmann RG (2007) ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am J Physiol Ren Physiol 292:F440–F447. https://doi.org/10.1152/ajprenal.00170.2006</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1152/ajprenal.00170.2006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Collier JB, Schnellmann RG (2017) Extracellular signal-regulated kinase 1/2 regulates mouse kidney injury molecule-1 expression physiologically and following ischemic and septic renal injury. J Pharmacol Exp Ther 363:419–427. https://doi.org/10.1124/jpet.117.244152</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1124/jpet.117.244152</ArticleId>
<ArticleId IdType="pubmed">29074644</ArticleId>
<ArticleId IdType="pmcid">5698947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chung J, Uchida E, Grammer TC, Blenis J (1997) STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 17:6508–6516. https://doi.org/10.1128/mcb.17.11.6508</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1128/mcb.17.11.6508</ArticleId>
<ArticleId IdType="pubmed">9343414</ArticleId>
<ArticleId IdType="pmcid">232504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Feng Z, Zheng W, Tang Q, Cheng L, Li H, Ni W, Pan X (2017) Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats. Apoptosis 22:1001–1012. https://doi.org/10.1007/s10495-017-1383-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10495-017-1383-1</ArticleId>
<ArticleId IdType="pubmed">28601953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sahni M, Raz R, Coffin JD, Levy D, Basilico C (2001) STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128:2119–2129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fukushima H, Jimi E, Okamoto F, Motokawa W, Okabe K (2005) IL-1-induced receptor activator of NF-kappa B ligand in human periodontal ligament cells involves ERK-dependent PGE2 production. Bone 36:267–275. https://doi.org/10.1016/j.bone.2004.09.011</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.bone.2004.09.011</ArticleId>
<ArticleId IdType="pubmed">15780952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Park HJ, Baek K, Baek JH, Kim HR (2017) TNFalpha increases RANKL expression via PGE(2)-induced activation of NFATc1. Int J Mol Sci 18. https://doi.org/10.3390/ijms18030495</Citation>
</Reference>
<Reference>
<Citation>Vuolteenaho K, Koskinen A, Kukkonen M, Nieminen R, Paivarinta U, Moilanen T, Moilanen E (2009) Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage--mediator role of NO in leptin-induced PGE2, IL-6, and IL-8 production. Mediat Inflamm 2009:345838–345810. https://doi.org/10.1155/2009/345838</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1155/2009/345838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hsu YH, Cheng CY, Chen YC, Chen TH, Sue YM, Tsai WL, Chen CH (2012) Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation. Eur J Pharmacol 689:65–71. https://doi.org/10.1016/j.ejphar.2012.06.008</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ejphar.2012.06.008</ArticleId>
<ArticleId IdType="pubmed">22713546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66:6683–6691. https://doi.org/10.1158/0008-5472.CAN-06-0425</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1158/0008-5472.CAN-06-0425</ArticleId>
<ArticleId IdType="pubmed">16818642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Ruiz Heiland, G" sort="Ruiz Heiland, G" uniqKey="Ruiz Heiland G" first="G" last="Ruiz-Heiland">G. Ruiz-Heiland</name>
</noRegion>
<name sortKey="Ruf, S" sort="Ruf, S" uniqKey="Ruf S" first="S" last="Ruf">S. Ruf</name>
<name sortKey="Von Bremen, J" sort="Von Bremen, J" uniqKey="Von Bremen J" first="J" last="Von Bremen">J. Von Bremen</name>
<name sortKey="Yong, J W" sort="Yong, J W" uniqKey="Yong J" first="J W" last="Yong">J W Yong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SuicidDentistV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SuicidDentistV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32820432
   |texte=   Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32820432" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SuicidDentistV1 

Wicri

This area was generated with Dilib version V0.6.39.
Data generation: Sun Oct 3 17:04:29 2021. Site generation: Sun Oct 3 17:05:17 2021